
1
© UGS Corp. 2005. All rights reserved.

The NXOpen API : How it Works
Alasdair Mackintosh
UGS Architecture

2
© UGS Corp. 2005. All rights reserved.

The NXOpen API

Provides a modern, Object Oriented interface to NX

Provides the same interface in:

Java

Microsoft .NET

C++

Supports remote (client/server) access

Provides documentation in three formats

Supports existing User Function interface in .NET
and Java

3
© UGS Corp. 2005. All rights reserved.

Anatomy of a Simple Class : Line

A Line has a start point and an end point.
Java
public interface Line extends Curve {

/** Returns the start point of the line

 License requirements: None.
 */

public Point3d startPoint() throws NXException,RemoteException;

.NET
public class Line: Curve {

/// <summary> Returns the start point of the line </summary>
/// <remarks> License requirements: None. </remarks>

public unsafe Point3d StartPoint { ...

C++
class NXOPENCPPEXPORT Line : public Curve {

/**Returns the start point of the line

 License requirements : None */

public: NXOpen::Point3d StartPoint();

How do we support 700+ complex classes in three languages?

4
© UGS Corp. 2005. All rights reserved.

How do we do it?

5
© UGS Corp. 2005. All rights reserved.

How we do it

The interface for each class is defined in a an
interface definition file. Internally called a “JA” file.

Line.ja
class Line : Curve
{

/** the start point of the line */
[no_license]
[version_created("3")]
extern API_PROPERTY int JA_LINE_get_start_point
(

tag_t line API_THIS,
PNT3_p_t start_point API_RESULT /** */

);

6
© UGS Corp. 2005. All rights reserved.

Interface and Implementation

The developer writes an interface definition in the JA
file, and then writes an implementation of that
interface in an internal NX C/C++ source file.
extern int JAX_LINE_get_start_point
(

tag_t line,
PNT3_p_t start_point

)
{

double line_def[6];
ES_ask_coordinates_of_line (line , line_def);
PNT3_init_p(line_def, start_point);
return 0;

}

7
© UGS Corp. 2005. All rights reserved.

Compilation

The JA file is then compiled to produce the Java, .NET and C++
wrappers.

Line.ja JA
compiler

Line.cxx

Line.cs

Line.java

8
© UGS Corp. 2005. All rights reserved.

Calling sequence

Each Language invokes the same underlying API

Line.cxxLine.csLine.java

JAX_LINE_get_start_point
(

tag_t line,
PNT3_p_t start_point

)
{

9
© UGS Corp. 2005. All rights reserved.

Compiler

The Compiler handles all of the supported data
types:

Fundamental types
Integers, doubles, boolean (true/false)

Strings (Unicode and locale)

Enumerated types (Create, Unite, Intersect)

API Types
Point, Vector, Matrix

Structures

Each type is handled appropriately for the target
language.

10
© UGS Corp. 2005. All rights reserved.

Compiler…

Produces an API matched to the target language.
For example:

Uses std::vector in C++, arrays in Java and .NET

Uses enums in C++ and .NET, “static final int” in Java

Special handling for output arguments in Java

Special class for Unicode strings in C++

Uses properties in .NET, methods in C++ and Java

The developer writing the JA file does not need to
know the details of each language.

11
© UGS Corp. 2005. All rights reserved.

Compiler…

Compiler handles all details of interface between API
language and NX core.

Each data type is correctly handled.

Translates from managed to native code.

Produces correct JNI code for Java API

Uses .NET mechanism for invoking native functions

Handles error codes and exceptions in the NX core,
and throws NXException objects to callers of the
NXOpen API.

12
© UGS Corp. 2005. All rights reserved.

Remoting

Remote Procedure Calls are supported in .NET and Java

Uses standard protocols (RMI, .NET Remoting Mechanism)

JA Classes are designed to support remoting

No constructors

All factory classes accessible from Session or Part class

Compiler handles details

Enforces above rules

Correct inheritance to support remoting.

All structures serializable

13
© UGS Corp. 2005. All rights reserved.

Documentation

Developers provide documentation in the JA file

Line.ja
class Line : Curve
{

/** the start point of the line */
extern API_PROPERTY int JA_LINE_get_start_point

Compiler produces documentation suitable for each language

Classes and methods named correctly for each language

Hyperlinks between classes.

14
© UGS Corp. 2005. All rights reserved.

User Function in Java and .NET

Most User Function routines are callable from Java
and .NET

Provides access to functionality not exposed in the
NXOpen API

Allows you to start working in Java/.NET now

Legacy applications can be ported

UF wrappers generated by parsing UF header files

Some functions not suitable do to argument types.
E.g. void*

15
© UGS Corp. 2005. All rights reserved.

Recording Journals

Journal Recording:

Allows playback of an interactive session

Useful for generating template code for applications

Recording supported in all three languages

Journaling layer provided by the compiler

Records all methods invoked, with input and output
arguments

Separate journaling classes can write Java, VB or C++

NX User Interface calls Journaling layer

16
© UGS Corp. 2005. All rights reserved.

NXOpen API with Journaling

Line.cs

JAX_LINE_set_start_point

JA_LINE_set_start_point

journal.vb
NX User Interface

17
© UGS Corp. 2005. All rights reserved.

New in NX4
NX classes for Knowledge Fusion

Knowledge Fusion allows developers to specify rules that
capture design intent.

KF classes are represented as a set of attributes

New set of KF classes derived from JA files

18
© UGS Corp. 2005. All rights reserved.

Extrude Example

In .NET

Dim extrudeBuilder As Features.ExtrudeBuilder
extrudeBuilder.Limits.StartExtend.SetValue("0")
extrudeBuilder.Limits.EndExtend.SetValue("25")

In KF

19
© UGS Corp. 2005. All rights reserved.

Generating KF classes

Original KF classes all written by hand

New KF classes generated by the same compiler
that produces .NET, Java and C++

KF differs from procedural languages. Not all
NXOpen classes are suitable.

KF objects represented as a set of attributes. Not all
NXOpen methods translate directly.

Limited number of KF classes for NX4. More classes
published in NX5.

Still better than writing by hand

20
© UGS Corp. 2005. All rights reserved.

Summary

NXOpen API is produced by compiling an interface
definition file:

All API code is generated automatically.

UGS has no “preferred” language. Use the one that is
best for your application.

Journals are produced using the NXOpen API:

NX UI calls the same functions as external
applications.

Addition of KF support in NX4 demonstrates
versatility of existing approach

21
© UGS Corp. 2005. All rights reserved.

www.ugs.com

Thank you

	The NXOpen API : How it Works
	The NXOpen API
	Anatomy of a Simple Class : Line
	How do we do it?
	How we do it
	Interface and Implementation
	Compilation
	Calling sequence
	Compiler
	Compiler…
	Compiler…
	Remoting
	Documentation
	User Function in Java and .NET
	Recording Journals
	NXOpen API with Journaling
	New in NX4�NX classes for Knowledge Fusion
	Extrude Example
	Generating KF classes
	Summary
	www.ugs.com

